Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

cis-Bis[(3-aminopropyl)dimethyl-phosphine- $\left.\kappa^{2} N, P\right]$ palladium(II) dichloride methanol solvate

Takayoshi Suzuki, ${ }^{\text {a* }}$ Atsushi Hasegawa, ${ }^{\text {b }}$ Hiroshi Yamaguchi, ${ }^{\text {b }}$ Kazuo Kashiwabara ${ }^{\text {b }}$ and Hideo D. Takagi ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan, and ${ }^{\text {b }}$ Graduate School of Science and Research Center for Materials Science, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan
Correspondence e-mail: suzuki@chem.sci.osaka-u.ac.jp

Received 24 May 2006
Accepted 20 June 2006
Online 12 September 2006

In the title compound, cis- $\left[\operatorname{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{NP}\right)_{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{CH}_{4} \mathrm{O}$, the coordination geometry around the $\mathrm{Pd}^{\mathrm{II}}$ center is distorted square planar, with a cis- $\mathrm{P}_{2} \mathrm{~N}_{2}$ configuration of the two chelating (3-aminopropyl)dimethylphosphine (pdmp) ligands. The six-membered pdmp chelate rings adopt chair conformations, and pairing of the chairs designates the complex cation as a $\left(C_{s}\right)$-chair ${ }_{2}$ conformer. The distances between the $\mathrm{Pd}^{\mathrm{II}}$ center and the Cl^{-}anions are greater than $4.5 \AA$, indicating no obvious interaction.

Comment

In transition metal complexes with chelating ligands, the chelate ring size, i.e. the number of backbone C atoms between two ligating atoms, often exerts severe effects on the thermal stabilities, molecular structures and chemical reactivities of the complexes (Stoppioni et al., 1982; Poverenov et al., 2005). Aminoalkylphosphines are bidentate ligands that can form chelate rings of a variety of sizes, and their metal complexes have recently attracted much interest as effective homogeneous catalysts (Müller et al., 2002; Andrieu et al., 2006). We have previously prepared a number of transition metal complexes bearing (2-aminoethyl)dimethylphosphine (edmp, $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}$), which is one of the most fundamental and less sterically demanding of the aminoalkylphosphines, forming a five-membered chelate ring (Kashiwabara et al., 1997; Suzuki et al., 1994, 1996; Kita et al., 1994; Kinoshita et al., 1980, 1981). In contrast, to our knowledge, there have so far been no reports on the metal complexes of (3-aminopropyl)dimethylphosphine (pdmp, $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}$), which gives the corresponding sixmembered amine-phosphine chelate ring. In the present study, we have prepared the first example of a pdmp complex of palladium(II), viz. cis- $\left[\mathrm{Pd}(\mathrm{pdmp})_{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{MeOH}$, (I), and
compared the crystal structure with those of the analogous edmp and related complexes.

The analysis revealed that the $\mathrm{Pd}^{\mathrm{II}}$ complex cation in (I) possesses two chelating pdmp ligands in a cis $-\mathrm{P}_{2} \mathrm{~N}_{2}$ configuration (Fig. 1). The chelate bite angles are 86.40 (5) and 88.54 (6) ${ }^{\circ}$ (Table 1), which are larger than those of edmp in cis$\left[\mathrm{Pd}(\mathrm{edmp})_{2}\right] \mathrm{Cl}\left(\mathrm{BF}_{4}\right)$, (II) [83.9 (3) and 84.5 (3) ${ }^{\circ}$; Suzuki et al., 1996]. This fact infers that the steric interaction between mutually cis-positioned $-\mathrm{PMe}_{2}$ groups is somewhat larger in (I) than in (II). In general, in four-coordinate square-planar complexes, the trans $-\mathrm{P}_{2} \mathrm{~N}_{2}$ isomer is advantageous with regard to the intramolecular steric congestion arising from the bulky substituents on P atoms, but the strong trans influence of the phosphine ligands tends to stabilize the cis- $\mathrm{P}_{2} \mathrm{~N}_{2}$ configuration. The preferential formation of the cis isomer in complex (I) indicates that the trans influence of the $-\mathrm{PMe}_{2}$ group is still the primary effect for determining the complex geometry, even in the sterically more demanding pdmp six-membered chelate ring system. The coordination geometry around the $\mathrm{Pd}^{\mathrm{II}}$ center is significantly distorted from square planar. The dihedral angle between the $\mathrm{Pd} / \mathrm{P} 1 / \mathrm{N} 1$ and $\mathrm{Pd} / \mathrm{P} 2 / \mathrm{N} 2$ planes is 14.5 (1) ${ }^{\circ}$. This tetrahedral distortion of the $\mathrm{Pd}^{\mathrm{II}}$ coordination geometry is much larger than that observed in the related 8-dimethylphosphinoquinoline ($\mathrm{Me}_{2} \mathrm{Pqn}$) complex cis$\left[\mathrm{Pd}\left(\mathrm{Me}_{2} \mathrm{Pqn}\right)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (the corresponding dihedral angle is 10.3°), where a severe steric repulsion was expected between ortho H atoms of mutually cis-positioned quinolyl donor groups (Suzuki et al., 1995). It is noteworthy that the edmp complex (II) adopts an almost planar $\mathrm{PdP}_{2} \mathrm{~N}_{2}$ coordination (Suzuki et al., 1996). In (I), each six-membered pdmp chelate ring adopts a chair conformation, and pairing of these chairs designates the complex cation as a $\left(C_{s}\right)$-chair ${ }_{2}$ conformer. This

Figure 1
An ORTEP-3 (Farrugia, 1997) view of the components of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
is in contrast to a similar (3-aminopropyl)diphenylphosphine complex, cis- $\left[\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right] \mathrm{Cl}_{2}$, which was characterized as a $\left(C_{2}\right)$-chair ${ }_{2}$ conformer (Habtemariam et al., 2001). In the $\left(C_{s}\right)$-chair ${ }_{2}$ conformer, greater steric congestion is expected between the substituents on the mutually cispositioned P -donor atoms than in the $\left(C_{2}\right)$-chair ${ }_{2}$ conformer. In fact, the $\mathrm{C} 1 \cdots \mathrm{C} 6$ distance is 3.257 (3) \AA and the closest $\mathrm{H} \cdots \mathrm{H}$ contact between the two methyl groups is $2.29 \AA$ for $\mathrm{H} 1 C \cdots \mathrm{H} 6 A$, which is nearly the sum of the van der Waals radii of two H atoms $(2.44 \AA$).

The $\mathrm{Pd}-\mathrm{P}$ and $\mathrm{Pd}-\mathrm{N}$ bond lengths in (I) (Table 1) are comparable to those in (II) $[\mathrm{Pd}-\mathrm{P}=2.243$ (3) and 2.248 (3) \AA, and $\mathrm{Pd}-\mathrm{N}=2.123$ (10) and 2.153 (10) $\AA]$. One of the most intriguing differences in the crystal structures of (I) and (II) is the location of the Cl^{-}anion(s). In (II), the anion is located above the $\mathrm{Pd}^{\text {II }}$ coordination plane, with a $\mathrm{Pd} \cdots \mathrm{Cl}$ distance of 3.166 (3) \AA, indicating a weak interaction between these atoms. In the crystal structure of cis- $\left[\mathrm{Pd}\left(\mathrm{Ph}_{2} \mathrm{Pqn}\right)_{2}\right] \mathrm{Cl}_{2}$ $\left(\mathrm{Ph}_{2} \mathrm{Pqn}\right.$ is 8-diphenylphosphinoquinoline), the two Cl^{-} anions are located above and below the $\mathrm{Pd}^{\mathrm{II}}$ coordination plane, with $\mathrm{Pd} \cdots \mathrm{Cl}$ distances of 3.262 (3) and 3.386 (3) \AA (Suzuki, 2004). In contrast to these compounds, complex (I) does not exhibit any interaction between the $\mathrm{Pd}^{\mathrm{II}}$ center and the Cl^{-}anions ($>4.5 \AA$), although one side of the $\mathrm{Pd}^{\mathrm{II}}$ coordination plane is sterically open for such an interaction. Instead, hydrogen-bonding interactions between the coordinated amino groups of the pdmp ligands and the Cl^{-}counteranions are effective in (I) (Table 2). It is expected that these hydrogen bonds stabilize the less preferable $\left(C_{s}\right)$-chair ${ }_{2}$ conformer. The methanol molecule is hydrogen bonded to atom Cl1 and not coordinated to the Pd atom, the Pd1…O1 distance being 3.800 (2) \AA.

Experimental

Compound (I) was prepared by the reaction of $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}\right)_{2}\right]$ ($283 \mathrm{mg}, 0.74 \mathrm{mmol}$) and pdmp ($0.25 \mathrm{ml}, 2.1 \mathrm{mmol}$) in acetonitrile $(50 \mathrm{ml})$. The crude product obtained by evaporation of the solvent was purified by Sephadex LH-20 column chromatography using methanol as eluant. Evaporation of the solvent from the eluate left a white powder of $\left[\mathrm{Pd}(\mathrm{pdmp})_{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{MeOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (yield 223 mg , 55%). Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pd} \cdot \mathrm{CH}_{4} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C} 28.4, \mathrm{H} 7.36$, $\mathrm{N} 6.02 \%$; found: $\mathrm{C} 28.6, \mathrm{H} 7.33, \mathrm{~N} 6.01 \%$. When the compound was recrystallized from dimethyl sulfoxide by vapor diffusion of diethyl ether, colorless needle-shaped crystals of the monohydrate were obtained. Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pd} \cdot \mathrm{H}_{2} \mathrm{O}$: C $27.7, \mathrm{H} 6.97, \mathrm{~N} 6.46 \%$; found: $\mathrm{C} 27.9, \mathrm{H} 6.80, \mathrm{~N} 6.49 \%$. Crystals of the methanol solvate, (I), suitable for X-ray analysis were deposited by vapor diffusion of diethyl ether into a methanol solution.

Crystal data

```
\(\left[\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{NP}\right)_{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{CH}_{4} \mathrm{O}\)
\(M_{r}=447.65\)
Monoclinic, \(P 2_{1} / c\)
\(a=9.904\) (6) \(\AA\)
\(b=9.654\) (6) \(\AA\)
\(c=20.130\) (13) \(\AA\)
\(\beta=94.228\) (11) \({ }^{\circ}\)
\(V=1920(2) \AA^{3}\)
```

Data collection
Rigaku Mercury diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.766, T_{\text {max }}=0.872$
14453 measured reflections 4289 independent reflections 4026 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0206 P)^{2} \\
&+1.828 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.004 \\
& \Delta \rho_{\max }=0.57 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.49 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.056$
$S=1.11$
177 parameters

H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

Pd1-N1			
Pd1-N2	$2.137(2)$	Pd1-P1	$2.2528(13)$
			$2.2577(14)$
N1-Pd1-N2	$89.53(7)$	N1-Pd1-P2	$167.98(5)$
N1-Pd1-P1	$88.54(6)$	N2-Pd1-P2	$86.40(5)$
N2-Pd1-P1	$170.58(5)$	P1-Pd1-P2	$97.26(3)$

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 2$	0.92	2.41	$3.325(3)$	171
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.92	2.31	$3.195(3)$	162
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.92	2.44	$3.356(3)$	174
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.92	2.53	$3.339(3)$	147
$\mathrm{O} 1-\mathrm{H} 01 \cdots \mathrm{Cl} 1$	$0.79(4)$	$2.36(4)$	$3.138(3)$	$171(3)$
Symmetry codes: (i) $-x,-y,-z+2 ;$ (ii) $-x, y-\frac{1}{2},-z+\frac{3}{2}$.				

H atoms bonded to C and N atoms were positioned geometrically and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.98 and $0.99 \AA, \mathrm{~N}-\mathrm{H}$ distances of $0.92 \AA$, and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The hydroxy H atom of the methanol molecule was located in a difference map and refined isotropically.

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported in part by a Grant-in-Aid for Scientific Research (No. 16550055) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

[^0]
metal-organic compounds

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Habtemariam, A., Watchman, B., Potter, B. S., Palmer, R., Parsons, S., Parkin, A. \& Sadler, P. (2001). J. Chem. Soc. Dalton Trans. pp. 1306-1318.

Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
Kashiwabara, K., Morikawa, A., Suzuki, T., Isobe, K. \& Tatsumi, K. (1997). J. Chem. Soc. Dalton Trans. pp. 1075-1081.
Kinoshita, I., Kashiwabara, K. \& Fujita, J. (1980). Bull. Chem. Soc. Jpn, 53, 3715-3716.
Kinoshita, I., Kashiwabara, K., Fujita, J., Matsumoto, K. \& Ooi, S. (1981). Bull. Chem. Soc. Jpn, 54, 725-732.
Kita, M., Kashiwabara, K., Fujita, J., Tanaka, H. \& Ohba, S. (1994). Bull. Chem. Soc. Jpn, 67, 2457-2462.
Müller, C., Lachicotte, R. J. \& Jones, W. D. (2002). Organometallics, 21, 19751981.

Poverenov, A., Gandelman, M., Shimon, L. J. W., Rozenberg, H., Ben-David, Y. \& Milstein, D. (2005). Organometallics, 24, 1082-1090.

Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoppioni, P., Di Vaira, M. \& Maitlis, P. M. (1982). J. Chem. Soc. Dalton Trans. pp. 1147-1154.
Suzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869-1876.
Suzuki, T., Kashiwabara, K. \& Fujita, J. (1995). Bull. Chem. Soc. Jpn, 68, 16191626.

Suzuki, T., Morikawa, A. \& Kashiwabara, K. (1996). Bull. Chem. Soc. Jpn, 69, 2539-2548.
Suzuki, T., Rude, M., Simonsen, K. P., Morooka, M., Tanaka, H., Ohba, S., Galsbøl, F. \& Fujita, J. (1994). Bull. Chem. Soc. Jpn, 67, 1013-1023.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB3009). Services for accessing these data are described at the back of the journal.

 ## References

 Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
 Andrieu, J., Manus, J.-M., Richard, O., Poli, R., Gonsalvi, L., Vizza, F. \& Peruzzini, M. (2006). Eur. J. Inorg. Chem. pp. 51-61.

